Preface

Man kann
einen jeden Begriff,
einen jeden Titel,
darunter viele Erkenntnisse gehören,
einen logischen Ort nennen.
Immanuel Kant [258, p. B 324]

This book’s title subject, The Topos of Music, has been chosen to communicate a double message: First, the Greek word “topos” (τόπος = location, site) alludes to the logical and transcendental location of the concept of music in the sense of Aristotle’s [20, 592] and Kant’s [258, p. B 324] topic. This view deals with the question of where music is situated as a concept—and hence with the underlying ontological problem: What is the type of being and existence of music? The second message is a more technical understanding insofar as the system of musical signs can be associated with the mathematical theory of topoi, which realizes a powerful synthesis of geometric and logical theories. It laid the foundation of a thorough geometrization of logic and has been successful in central issues of algebraic geometry (Grothendieck, Deligne), independence proofs and intuitionistic logic (Cohen, Lawvere, Kripke).

But this second message is intimately entwined with the first since the present concept framework of the musical sign system is technically based on topos theory, so the topos of music receives its topos-theoretic foundation. In this perspective, the double message of the book’s title in fact condenses to a unified intention: to unite philosophical insight with mathematical explicitness.

According to Birkhäuser’s initial plan in 1986, this book was first conceived as an English translation of my former book Geometrie der Töne [310], since the German original had suffered from its restricted access to the international public. However, the scientific progress since 1989, when it was written, has been considerable in theory and technology. We have known new subjects, such as the denotator concept framework, performance theory, and new software platforms for composition, analysis, and performance, such as RUBATO® or OpenMusic. Modeling concepts via the denotator approach in fact results from an intense collaboration of mathematicians and computer scientists in the object-oriented programming paradigm and supported by several international research grants.
Also, the scientific acceptance of mathematical music theory has grown since its beginnings in the late 1970s. As the first acceptance of mathematical music theory was testified to by von Karajan's legendary Oster Symposium "Musik und Mathematik" in 1984 in Salzburg [190], so is the significantly improved present status of acceptance testified to by the Fourth Diderot Forum on Mathematics and Music [365] in Paris, Vienna, and Lisbon 1989, which was organized by the European Mathematical Society. The corresponding extension of collaborative efforts in particular entail the inclusion of works by other research groups in this book, such as the "American Set Theory", the Swedish school of performance research at Stockholm's KTH, or the research on computer-aided composition at the IRCAM in Paris.

Therefore, as a result of these revised conditions, The Topos of Music appears as a vastly extended English update of the original work. The extension is visibly traced in the following parts which are new with respect to [340]: Part II exposes the theory of denotators and forms, part V introduces the topological theories of rhythms and motives, part VIII introduces the structure theory of performance, part IX deals with the expressive semantics of performance in the language of performance operators and stemmata (genealogical trees of successively refined performance), part X is devoted to the description of the RUBATO® software platform for representation, analysis, composition, and performance, part XI presents a statistical analysis of musical analysis, part XII concludes the subject of performance with an inverse performance theory, in fact a first formalization of the problem of music criticism.

This does however not mean that the other parts are just translations of the German text. Considerable progress has been made in most fields, except the last part XIV which reproduces the status quo in [340]. In particular, the local and global theories have been thoroughly functorialized and thereby introduce an ontological depth and variability of concepts, techniques, and results, which by far transcend the semiotically naive geometric approach in [340]. The present theory is as different from the traditional geometric conceptualization as is Grothendieck’s topos theoretic algebraic geometry from classical algebraic geometry in the spirit of Segre, van der Waerden, or Zariski.

Beyond this topos-theoretic generalization, the denotator language also introduces a fairly exceptional technique of circular concept constructions. This more precisely is rooted in Finsler’s pioneering work in foundations of set theory [153], a thread which has been rediscovered in modern theoretical computer sciences [4]. The present state of denotator theory rightly could be termed a Galois theory of concepts in the sense that circular definitions of concepts play the role of conceptual equations (corresponding to algebraic equations in algebraic Galois theory), the solutions of which are concepts instead of algebraic numbers.

Accordingly, the mathematical apparatus has been vastly extended, not only in the field of topos theory and its intuitionistic logic, but also with regard to general and algebraic topology, ordinary and partial differential equations, Pólya theory, statistics, multiaffine algebra and functorial algebraic geometry. It is mandatory that these technicalities had to be placed in a more elaborate semiotic perspective. However, this book does not cover the full range of music semiotics, for which the reader is referred to [361]. Of course, such an extension on the technical level has consequences for the readability of the theory. In view of the present volume of over 1300 pages, we could however not even make the attempt to approach a non-technical presentation. This subject is left to subsequent efforts. The critical reader may put the question whether music is really that complex. The answer is yes, and the reason is straightforward. We cannot pretend that Bach, Haydn, Mozart, or Beethoven, just to name some of the most prominent
composers, are outstanding geniuses and have elaborated masterworks of eternal value, without trying to understand such singular creations with adequate tools, and this means: of adequate depth and power. After all, understanding God's 'composition', the material universe, cannot be approached without the most sophisticated tools as they have been elaborated in physics, chemistry, and molecular biology.

So who is recommended to read this book? A first category of readers is evidently the working scientist in the fields of mathematical music theory, the soft- and hardware engineer in music informatics, but also the mathematician who is interested in new applications from the above fields of pure mathematics. A second category are those theoretical mathematicians or computer scientists interested in the Galois theory of concepts; they may discover interesting unsolved problems. A third category of potential readers are all those who really want to get an idea of what music is about, of how one may conceptualize and turn into language the "ineffable" in music for the common language. Those who insist on the dogma that precision and beauty contradict each other, and that mathematics only produces tautologies and therefore must fail when aiming at substantial knowledge, should not read such a book.

Despite the technical character of The Topos of Music, there are at least four different approaches to its reading. To begin with, one may read it as a dictionary for computational musicology, including its concept framework and the lists of musical objects and processes (such as modulation degrees, contrapuntal steps) in the appendices. Observe however, that not all existing important lists have been included. For example, the list of all-interval series and the list of self-addressed chords are omitted, the reader may find these lists in other publications. Thirdly, the working scientist will have to read the full-fledged technicalities. And last, but not least, one may take the book as a source for ideas of how to go on with the whole subject of music. The GPL (General Public License\(^1\)) software sources in the appended CD-ROM may support further development.

The prerequisites to a more in-depth reading of this book are these. Generally speaking, a good acquaintance with formal reasoning as mathematics (including formal logic) preconizes, is a conditio sine qua non. As to musicology and music theory, the familiarity with elementary concepts, like chords, motives, rhythm, and also musical notation, as well as a real interest in understanding music and not simply (ab)using it, are recommended. For the more computer-oriented passages, familiarity with the paradigm of object oriented programming is profitable. We have not included the appendix on mathematical basics because it should help the reader get familiar with mathematics, but as an orientation in fields where the specialized mathematician possibly needs a specification of concepts and notation. The appendix was also included to expose the spectrum of mathematics which is needed to tackle the formal problems of computational musicology. It is by no means an overkill of mathematization: We have even omitted some non-trivial fields, such as statistics or Lambda calculus, for which we have to apologize.

There are different supporting instances to facilitate orientation in this book. To begin with, the table of contents and an extensive subject and name index may help find one's keywords. Further, following the list of contents, a leitfaden (on page xxix) is included for a generic navigation. Each chapter and section is headed by a summary that offers a first orientation.

\(^1\)A legal matter file is contained in the book's CD-ROM, see page xxx.
about specific contents. Finally, the book is also available as a file ToposOfMusic.pdf with bookmarks and active cross-references in the appended CD-ROM (see page xxx for its contents). This version is also attractive because the figures' colors are visible only in this version.

In order to obtain a consistent first reading, we recommend chapters 1 to 5, and then appendix A: Common Parameter Spaces (appendix B is not mandatory here, though it gives a good and not too technical overview of auditory physiology). After that, the reader may go on with chapter 6 on denotators and then follow the outline of the leitfaden (see page xxix).

This book could not have been realized without the engaged support of nineteen collaborators and contributors. Above all, my PhD students Stefan Gölker and Stefan Müller at the MultiMedia Laboratory of the Department of Information Technology at the University of Zurich have collaborated in the production of this book on the levels of the \LaTeX installation, the final production of hundreds of figures, and the contributions sections 20.2 through 20.5 (Gölker) and sections 46.3 through 46.3.6.2 (Müller). My special gratitude goes to their truly collaborative spirit.

Contributions to this book have been delivered by (in alphabetic order): By Carlos Agon, and Gérard Assayag (both IRCAM) with their precious Lambda-calculus-oriented presentation of the object-oriented programming principles in the composition software OpenMusic described in chapter 54, Marco Andreotta (IRCAM) with an elucidating discourse on the American Set Theory in section 11.5.2 and section 16.3, Jan Beran (Universität Konstanz) with his contribution to the compositional strategies in his original composition [19] in section 11.5.1.1, as well as with his inspiring work on statistics as reported in chapters 43 and 44, Chantal Buteau (Universität and ETH Zürich) with her detailed review of chapter 22, Roberto Ferretti (ETH Zürich) with his progressive contributions to the algebraic geometry of inverse performance theory in sections 39.8 and 46.2, Anja Fleischer (Technische Universität Berlin) with her short but critical preliminaries in chapter 23, Harald Frerstinger (Universität Graz) with his ‘killer’ formulas concerning enumeration of finite local and global compositions in sections 11.4, 16.2.2 and appendix C.3.6, Jörg Garbers (Technische Universität Berlin) with his portation of the RUBATO\textregistered application to Mac OS X, as documented in the screenshots in chapters 40, 41, Werner Henner (Inifineon) with a very up-to-date presentation of room acoustics in section A.1.1.1 and auditory physiology in appendix B.1 (we would have loved to include more of his knowledge), Michael Leyton (DIMACS, Rutgers University) with a formidable cover figure entitled “Dark Theory”, a beautiful subtitle to this book, as well as with innumerable discussions around time and its reduction to symmetries as presented in chapter 47, Emilio Luis Puebla (UNAM, Mexico City) with his unique and engaged promotion and dissipation of mathematical music theory on the American continent, especially also in the preparation and critical review of this book, Mariana Montiel Hernandez (UNAM, Mexico City) with her critical review of the theory of circular forms and denotators in section 6.5 and appendix G.2.2.1, Thomas Noll (Technische Universität Berlin) with his substantial contributions to the functorial theory of compositions, and for his revolutionary rebuilding of Riemann’s harmony and its relations to counterpoint, Joachim Stange-Elbe (Universität Osnabrück) with a very clear and innovative description of his outstanding RUBATO\textregistered performance of Bach’s contrapunctus III in the Art of Fugue in sections 42.2 through 42.4.3, Hans Straub with his adventurous extensions of classical cadence theory in section 26.2.2 and his classification of four-element motives in appendix M.4, and, last but not least, Oliver Zahorska (Out Media Design), my former collaborator and chief programmer of the NeXT RUBATO\textregistered application, which has contributed so much to the
success of the Zürich school of performance theory. To all of them, I owe my deepest gratitude and recognition for their sweat and tears.

My sincere acknowledgments go to Alexander Grothendieck, whose encouraging letters and, no doubt, awe inspiring revolution in mathematical thinking has given me so much in isolated phases of this enterprise. My acknowledgments also go to my engaged mentor Peter Stucki, director of the MultiMedia Laboratory of the Department of Information Technology at the University of Zurich; without his support, this book would have seen its birthday years later, if ever. My thanks also go to my brother Silvio, who once again (he did it already for my first book [328]) supported the final review efforts by an ideal environment in his villa in Vulpera. My thanks also go to the unbureaucratic management of the book’s production by Birkhäuser’s lector Thomas Hempfling and the very patient copy editor Edwin Beschler. All these beautiful supports would have failed without my wife Christina’s infinite understanding and vital environment—if this book is a trace of humanity, it is also, and strongly, hers.

Vulpera, June 2002

Guerino Mazzola
Contents

I Introduction and Orientation 1

1 What is Music About? 3
 1.1 Fundamental Activities 4
 1.2 Fundamental Scientific Domains 6

2 Topography 9
 2.1 Layers of Reality 10
 2.1.1 Physical Reality 11
 2.1.2 Mental Reality 12
 2.1.3 Psychological Reality 12
 2.2 Molino’s Communication Stream 12
 2.2.1 Creator and Poetic Level 13
 2.2.2 Work and Neutral Level 14
 2.2.3 Listener and Esthetic Level 14
 2.3 Semiosis 16
 2.3.1 Expressions 16
 2.3.2 Content 17
 2.3.3 The Process of Signification 17
 2.3.4 A Short Overview of Music Semiotics 17
 2.4 The Cube of Local Topography 19
 2.5 Topographical Navigation 21

3 Musical Ontology 23
 3.1 Where is Music? 24
 3.2 Depth and Complexity 25

4 Models and Experiments in Musicology 29
 4.1 Interior and Exterior Nature 32
 4.2 What Is a Musicological Experiment? 33
 4.3 Questions Experimento of the Mind 34
 4.4 New Scientific Paradigms and Collaboratories 35
II Navigation on Concept Spaces

5 Navigation

- 5.1 Music in the EncycloSpace ... 40
- 5.2 Receptive Navigation .. 44
- 5.3 Productive Navigation .. 45

6 Denotators

- 6.1 Universal Concept Formats ... 48
 - 6.1.1 First Naive Approach To Denotators 50
 - 6.1.2 Interpretations and Comments 55
 - 6.1.3 Ordering Denotators and ‘Concept Leafing’ 58
- 6.2 Forms .. 61
 - 6.2.1 Variable Addresses ... 61
 - 6.2.2 Formal Definition .. 63
 - 6.2.3 Discussion of the Form Typology 66
- 6.3 Denotators .. 67
 - 6.3.1 Formal Definition of a Denotator 67
- 6.4 Anchoring Forms in Modules .. 69
 - 6.4.1 First Examples and Comments on Modules in Music 70
- 6.5 Regular and Circular Forms .. 76
- 6.6 Regular Denotators .. 79
- 6.7 Circular Denotators .. 85
- 6.8 Ordering on Forms and Denotators 89
 - 6.8.1 Concretizations and Applications 93
- 6.9 Concept Surgery and Denotator Semantics 99

III Local Theory

7 Local Compositions

- 7.1 The Objects of Local Theory .. 106
- 7.2 First Local Music Objects .. 108
 - 7.2.1 Chords and Scales .. 109
 - 7.2.2 Local Meters and Local Rhythms 114
 - 7.2.3 Motives .. 118
- 7.3 Functorial Local Compositions 121
- 7.4 First Elements of Local Theory 122
- 7.5 Alterations Are Tangents ... 127
 - 7.5.1 The Theorem of Mason–Mazzola 129

8 Symmetries and Morphisms

- 8.1 Symmetries in Music .. 137
 - 8.1.1 Elementary Examples ... 139
- 8.2 Morphisms of Local Compositions 154
- 8.3 Categories of Local Compositions 158
12 Topological Specialization .. 275
12.1 What Ehrenfels Neglected .. 276
12.2 Topology ... 277
 12.2.1 Metric Comparison .. 279
 12.2.2 Specialization Morphisms of Local Compositions 281
12.3 The Problem of Sound Classification 284
 12.3.1 Topographic Determinants of Sound Descriptions 284
 12.3.2 Varieties of Sounds ... 291
 12.3.3 Semiotics of Sound Classification 294
12.4 Making the Vague Precise .. 295

IV Global Theory ... 297
13 Global Compositions ... 299
 13.1 The Local-Global Dichotomy in Music 300
 13.1.1 Musical and Mathematical Manifolds 307
 13.2 What Are Global Compositions? .. 308
 13.2.1 The Nerve of an Objective Global Composition 310
 13.3 Functorial Global Compositions ... 314
 13.4 Interpretations and the Vocabulary of Global Concepts 316
 13.4.1 Iterated Interpretations .. 317
 13.4.2 The Pitch Domain: Chains of Thirds, Ecclesiastical Modes, Triadic and Quaternary Degrees 318
 13.4.3 Interpreting Time: Global Meters and Rhythms 326
 13.4.4 Motivic Interpretations: Melodies and Themes 331

14 Global Perspectives .. 333
 14.1 Musical Motivation ... 333
 14.2 Global Morphisms .. 334
 14.3 Local Domains ... 341
 14.4 Nerves .. 343
 14.5 Simplicial Weights ... 345
 14.6 Categories of Commutative Global Compositions 347

15 Global Classification ... 349
 15.1 Module Complexes .. 350
 15.1.1 Global Affine Functions .. 350
 15.1.2 Bilinear and Exterior Forms .. 353
 15.1.3 Deviation: Compositions vs. “Molecules” 355
 15.2 The Resolution of a Global Composition 356
 15.2.1 Global Standard Compositions 356
 15.2.2 Compositions from Module Complexes 358
 15.3 Orbits of Module Complexes Are Classifying 363
 15.3.1 Combinatorial Group Actions 364
CONTENTS

15.3.2 Classifying Spaces ... 366

16 Classifying Interpretations .. 369
 16.1 Characterization of Interpretable Compositions 370
 16.1.1 Automorphism Groups of Interpretable Compositions 372
 16.1.2 A Cohomological Criterion 374
 16.2 Global Enumeration Theory 376
 16.2.1 Tessellation ... 376
 16.2.2 Mosaics ... 378
 16.2.3 Classifying Rational Rhythms and Canons 380
 16.3 Global American Set Theory 382
 16.4 Interpretable “Molecules” 385

17 Esthetics and Classification 387
 17.1 Understanding by Resolution: An Illustrative Example 387
 17.2 Varèse’s Program and Yoneda’s Lemma 392

18 Predicates .. 397
 18.1 What Is the Case: The Existence Problem 397
 18.1.1 Merging Systematic and Historical Musicology 398
 18.2 Textual and Paratextual Semiosis 400
 18.2.1 Textual and Paratextual Signification 401
 18.3 Textuality .. 402
 18.3.1 The Category of Denotators 402
 18.3.2 Textual Semiosis .. 406
 18.3.3 Atomic Predicates .. 412
 18.3.4 Logical and Geometric Motivation 419
 18.4 Paratextuality .. 424

19 Topoi of Music ... 427
 19.1 The Grothendieck Topology 427
 19.1.1 Cohomology .. 430
 19.1.2 Marginalia on Presheaves 434
 19.2 The Topos of Music: An Overview 435

20 Visualization Principles .. 439
 20.1 Problems .. 439
 20.2 Folding Dimensions .. 442
 20.2.1 $R^2 \to R$.. 442
 20.2.2 $R^n \to R$.. 443
 20.2.3 An Explicit Construction of μ with Special Values 444
 20.3 Folding Denotators .. 445
 20.3.1 Folding Limits ... 446
 20.3.2 Folding Colimits ... 446
 20.3.3 Folding Powersets .. 448
 20.3.4 Folding Circular Denotators 448
V Topologies for Rhythm and Motives

21 Metrics and Rhythmics
21.1 Review of Riemann and Jackendoff-Lerdahl Theories
 21.1.1 Riemann’s Weights
 21.1.2 Jackendoff-Lerdahl: Intrinsic Versus Extrinsic Time Structures
21.2 Topologies of Global Meters and Associated Weights
21.3 Macro-Events in the Time Domain

22 Motif Gestalts
22.1 Motivic Interpretation
22.2 Shape Types
 22.2.1 Examples of Shape Types
22.3 Metrical Similarity
 22.3.1 Examples of Distance Functions
22.4 Paradigmatic Groups
 22.4.1 Examples of Paradigmatic Groups
22.5 Pseudo-metrics on Orbits
22.6 Topologies on Gestalts
 22.6.1 The Inheritance Property
 22.6.2 Cognitive Aspects of Inheritance
 22.6.3 Epsilon Topologies
22.7 First Properties of the Epsilon Topologies
 22.7.1 Toroidal Topologies
22.8 Rudolph Reti’s Motivic Analysis Revisited
 22.8.1 Review of Concepts
 22.8.2 Reconstruction
22.9 Motivic Weights

VI Harmony

23 Critical Preliminaries
23.1 Hugo Riemann
23.2 Paul Hindemith
23.3 Heinrich Schenker and Friedrich Salzer

24 Harmonic Topology
24.1 Chord Perspectives
 24.1.1 Euler Perspectives
 24.1.2 12-tempered Perspectives
 24.1.3 Enharmonic Projection
CONTENTS

24.2 Chord Topologies ... 518
 24.2.1 Extension and Intension 518
 24.2.2 Extension and Intension Topologies 520
 24.2.3 Faithful Addresses 523
 24.2.4 The Saturation Stencil 526

25 Harmonic Semantics .. 529
 25.1 Harmonic Signs—Overview 530
 25.2 Degree Theory .. 532
 25.2.1 Chains of Thirds 532
 25.2.2 American Jazz Theory 534
 25.2.3 Hans Straub: General Degrees in General Scales 537
 25.3 Function Theory 538
 25.3.1 Canonical Morphemes for European Harmony 540
 25.3.2 Riemann Matrices 543
 25.3.3 Chains of Thirds 545
 25.3.4 Tonal Functions from Absorbing Addresses 546

26 Cadence .. 551
 26.1 Making the Concept Precise 552
 26.2 Classical Cadences Relating to 12-tempered Intonation 553
 26.2.1 Cadences in Triadic Interpretations of Diatonic Scales 553
 26.2.2 Cadences in More General Interpretations 555
 26.3 Cadences in Self-addressed Tonalities of Morphology 556
 26.4 Self-addressed Cadences by Symmetries and Morphisms 558
 26.5 Cadences for Just Intonation 560
 26.5.1 Tonalities in Third-Fifth Intonation 560
 26.5.2 Tonalities in Pythagorean Intonation 561

27 Modulation ... 563
 27.1 Modeling Modulation by Particle Interaction 564
 27.1.1 Models and the Anthropic Principle 565
 27.1.2 Classical Motivation and Heuristics 565
 27.1.3 The General Background 568
 27.1.4 The Well-Tempered Case 571
 27.1.5 Reconstructing the Diatonic Scale from Modulation 574
 27.1.6 The Case of Just Tuning 576
 27.1.7 Quantized Modulations and Modulation Domains for Selected Scales 581
 27.2 Harmonic Tension 586
 27.2.1 The Riemann Algebra 586
 27.2.2 Weights on the Riemann Algebra 587
 27.2.3 Harmonic Tensions from Classical Harmony? 590
 27.2.4 Optimizing Harmonic Paths 591
28 Applications ... 593
 28.1 First Examples ... 594
 28.1.1 Johann Sebastian Bach: Choral from “Himmelfahrtosoratorium” 595
 28.1.2 Wolfgang Amadeus Mozart: “Zauberflöte”, Choir of Priests 598
 28.1.3 Claude Debussy: “Préludes”, Livre 1, No 4 .. 600
 28.2 Modulation in Beethoven’s Sonata op.106, 1st Movement 603
 28.2.1 Introduction ... 603
 28.2.2 The Fundamental Theses of Erwin Ratz and Jrgen Uhde 605
 28.2.3 Overview of the Modulation Structure .. 607
 28.2.4 Modulation B_3 \rightarrow G via e^{-3} in W .. 608
 28.2.5 Modulation G \rightarrow E_0 via U_{j_0} in W ... 608
 28.2.6 Modulation E_0 \rightarrow D/b from W to W^* ... 608
 28.2.7 Modulation D/b \rightarrow B via U_{d/b} = U_{j_0/a} within W^* 609
 28.2.8 Modulation B \rightarrow B_3 from W^* to W ... 609
 28.2.9 Modulation B_3 \rightarrow G_1 via U_{j_0} within W 610
 28.2.10 Modulation G_1 \rightarrow G via U_{j_0/a} within W 610
 28.2.11 Modulation G \rightarrow B_3 via e^{3} within W 610
 28.3 Rhythmic Modulation in “Synthesis” ... 610
 28.3.1 Rhythmic Modes .. 611
 28.3.2 Composition for Percussion Ensemble .. 613

VII Counterpoint .. 615

29 Melodic Variation by Arrows ... 617
 29.1 Arrows and Alterations ... 617
 29.2 The Contrapuntal Interval Concept .. 619
 29.3 The Algebra of Intervals .. 620
 29.3.1 The Third Torus .. 620
 29.4 Musical Interpretation of the Interval Ring .. 622
 29.5 Self-addressed Arrows .. 625
 29.6 Change of Orientation .. 626

30 Interval Dichotomies as a Contrast ... 629
 30.1 Dichotomies and Polarity .. 630
 30.2 The Consonance and Dissonance Dichotomy .. 634
 30.2.1 Fux and Riemann Consonances Are Isomorphic 635
 30.2.2 Induced Polarities .. 637
 30.2.3 Empirical Evidence for the Polarity Function 637
 30.2.4 Music and the Hippocampal Gate Function ... 641

31 Modeling Counterpoint by Local Symmetries ... 645
 31.1 Deformations of the Strong Dichotomies ... 645
 31.2 Contrapuntal Symmetries Are Local .. 647
 31.3 The Counterpoint Theorem .. 649
CONTENTS

31.3.1 Some Preliminary Calculations ... 649
31.3.2 Two Lemmata on Cardinalities of Intersections 651
31.3.3 An Algorithm for Exhibiting the Contrapuntal Symmetries 651
31.3.4 Transfer of the Counterpoint Rules to General Representatives of Strong Dichotomies .. 655

31.4 The Classical Case: Consonances and Dissonances 655
31.4.1 Discussion of the Counterpoint Theorem in the Light of Reduced Strict Style .. 656
31.4.2 The Major Dichotomy—A Cultural Antipode? 657

VIII Structure Theory of Performance

661

32 Local and Global Performance Transformations

663

32.1 Performance as a Reality Switch ... 665
32.2 Why Do We Need Infinite Performance of the Same Piece? 666
32.3 Local Structure .. 667
 32.3.1 The Coherence of Local Performance Transformations 667
 32.3.2 Differential Morphisms of Local Compositions 668
32.4 Global Structure .. 672
 32.4.1 Modeling Performance Syntax ... 674
 32.4.2 The Formal Setup .. 675
 32.4.3 Performance qua Interpretation of Interpretation 679

33 Performance Fields

681

33.1 Classics: Tempo, Intonation, and Dynamics 681
 33.1.1 Tempo ... 681
 33.1.2 Intonation ... 683
 33.1.3 Dynamics ... 685
33.2 Genesis of the General Formalism 686
 33.2.1 The Question of Articulation 687
 33.2.2 The Formalism of Performance Fields 689
33.3 What Performance Fields Signify 690
 33.3.1 Th. W. Adorno, W. Benjamin, and D. Raffman 691
 33.3.2 Towards Composition of Performance 693

34 Initial Sets and Initial Performances

695

34.1 Taking off with a Shifter .. 696
34.2 Anchoring Onset .. 697
34.3 The Concert Pitch .. 699
34.4 Dynamical Anchors .. 701
34.5 Initializing Articulation ... 701
34.6 Hit Point Theory ... 703
 34.6.1 Distances .. 704
 34.6.2 Flow Interpolation ... 706
CONTENTS

35 Hierarchies and Performance Scores 711
35.1 Performance Cells 711
35.2 The Category of Performance Cells 713
35.3 Hierarchies 714
 35.3.1 Operations on Hierarchies 718
 35.3.2 Classification Issues 718
 35.3.3 Example: The Piano and Violin Hierarchies 722
35.4 Local Performance Scores 723
35.5 Global Performance Scores 728
 35.5.1 Instrumental Fibers 728

IX Expressive Semantics 731

36 Taxonomy of Expressive Performance 733
36.1 Feelings: Emotional Semantics 734
36.2 Motion: Gestural Semantics 737
36.3 Understanding: Rational Semantics 741
36.4 Cross-sentential Relations 745

37 Performance Grammars 747
37.1 Rule-based Grammars 748
 37.1.1 The KTII School 749
 37.1.2 Neil P. McAgnos Todd 751
 37.1.3 The Zurich School 752
37.2 Remarks on Learning Grammars 753

38 Stemma Theory 755
38.1 Motivation from Practising and Rehearsing 756
 38.1.1 Does Reproducibility of Performances Help Understanding? 757
38.2 Tempo Curves Are Inadequate 758
38.3 The Stemma Concept 762
 38.3.1 The General Setup of Matrilinal Sexual Propagation 763
 38.3.2 The Primary Mother—Taking Off 765
 38.3.3 Mono- and Polygamy—Local and Global Actions 769
 38.3.4 Family Life—Cross-Correlations 771

39 Operator Theory 773
39.1 Why Weights? 774
 39.1.1 Discrete and Continuous Weights 775
 39.1.2 Weight Recombination 776
39.2 Primavista Weights 777
 39.2.1 Dynamics 777
 39.2.2 Agogics 780
 39.2.3 Tuning and Intonation 782
 39.2.4 Articulation 783
CONTENTS

39.2.5 Ornaments ... 783
39.3 Analytical Weights .. 785
39.4 Taxonomy of Operators .. 787
 39.4.1 Splitting Operators ... 788
 39.4.2 Symbolic Operators .. 789
 39.4.3 Physical Operators ... 791
 39.4.4 Field Operators ... 792
39.5 Tempo Operator .. 793
39.6 Scalar Operator .. 794
39.7 The Theory of Basis-Pianola Operators 795
 39.7.1 Basis Specialization .. 797
 39.7.2 Pianola Specialization 801
39.8 Locally Linear Grammars ... 801

X RUBATO© ... 805

40 Architecture .. 807
 40.1 The Overall Modularity ... 808
 40.2 Frame and Modules .. 809

41 The RUBETTE© Family ... 813
 41.1 MetroRUBETTE© .. 814
 41.2 MeloRUBETTE© .. 816
 41.3 HarmoRUBETTE© .. 819
 41.4 PerformanceRUBETTE© ... 824
 41.5 PrimavistaRUBETTE© ... 831

42 Performance Experiments ... 833
 42.1 A Preliminary Experiment: Robert Schumann’s “Kuriose Geschichte” 833
 42.2 Full Experiment: J.S. Bach’s “Kunst der Fuge” 834
 42.3 Analysis ... 835
 42.3.1 Metric Analysis ... 835
 42.3.2 Motif Analysis ... 839
 42.3.3 Omission of Harmonic Analysis 841
 42.4 Stemma Constructions .. 841
 42.4.1 Performance Setup ... 842
 42.4.2 Instrumental Setup 849
 42.4.3 Global Discussion ... 850

XI Statistics of Analysis and Performance 853

43 Analysis of Analysis .. 855
 43.1 Hierarchical Decomposition 855
 43.1.1 General Motivation 855
<table>
<thead>
<tr>
<th>43.1.2 Hierarchical Smoothing</th>
<th>857</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.1.3 Hierarchical Decomposition</td>
<td>858</td>
</tr>
<tr>
<td>43.2 Comparing Analyses of Bach, Schumann, and Webern</td>
<td>860</td>
</tr>
</tbody>
</table>

44 Differential Operators and Regression

<table>
<thead>
<tr>
<th>44.0.1 Analytical Data</th>
<th>873</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1 The Beran Operator</td>
<td>874</td>
</tr>
<tr>
<td>44.1.1 The Concept</td>
<td>874</td>
</tr>
<tr>
<td>44.1.2 The Formalism</td>
<td>877</td>
</tr>
<tr>
<td>44.2 The Method of Regression Analysis</td>
<td>880</td>
</tr>
<tr>
<td>44.2.1 The Full Model</td>
<td>880</td>
</tr>
<tr>
<td>44.2.2 Step Forward Selection</td>
<td>881</td>
</tr>
<tr>
<td>44.3 The Results of Regression Analysis</td>
<td>881</td>
</tr>
<tr>
<td>44.3.1 Relations between Tempo and Analysis</td>
<td>882</td>
</tr>
<tr>
<td>44.3.2 Complex Relationships</td>
<td>883</td>
</tr>
<tr>
<td>44.3.3 Commonalities and Diversities</td>
<td>884</td>
</tr>
<tr>
<td>44.3.4 Overview of Statistical Results</td>
<td>897</td>
</tr>
</tbody>
</table>

XII Inverse Performance Theory

<table>
<thead>
<tr>
<th>45 Principles of Music Critique</th>
<th>903</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.1 Boiling down Infinity—Is Feuilliotism Inevitable?</td>
<td>905</td>
</tr>
<tr>
<td>45.2 “Political Correctness” in Performance—Reviewing Gould</td>
<td>906</td>
</tr>
<tr>
<td>45.3 Transversal Ethnomusicology</td>
<td>909</td>
</tr>
</tbody>
</table>

46 Critical Fibers

<table>
<thead>
<tr>
<th>46.1 The Stemma Model of Critique</th>
<th>911</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.2 Fibers for Locally Linear Grammars</td>
<td>912</td>
</tr>
<tr>
<td>46.3 Algorithmic Extraction of Performance Fields</td>
<td>916</td>
</tr>
<tr>
<td>46.3.1 The Infinitesimal View on Expression</td>
<td>916</td>
</tr>
<tr>
<td>46.3.2 Real-time Processing of Expressive Performance</td>
<td>917</td>
</tr>
<tr>
<td>46.3.3 Score-Performance Matching</td>
<td>918</td>
</tr>
<tr>
<td>46.3.4 Performance Field Calculation</td>
<td>919</td>
</tr>
<tr>
<td>46.3.5 Visualization</td>
<td>921</td>
</tr>
<tr>
<td>46.3.6 The EspressoRUBETTE®, An Interactive Tool for Expression Extraction</td>
<td>922</td>
</tr>
<tr>
<td>46.4 Local Sections</td>
<td>925</td>
</tr>
<tr>
<td>46.4.1 Comparing Argerich and Horowitz</td>
<td>927</td>
</tr>
</tbody>
</table>

XIII Operationalization of Poiesis

<table>
<thead>
<tr>
<th>47 Unfolding Geometry and Logic in Time</th>
<th>931</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1 Performance of Logic and Geometry</td>
<td>933</td>
</tr>
<tr>
<td>47.2 Constructing Time from Geometry</td>
<td>934</td>
</tr>
<tr>
<td>47.3 Discourse and Insight</td>
<td>937</td>
</tr>
</tbody>
</table>
48 Local and Global Strategies in Composition ... 939
 48.1 Local Paradigmatic Instances ... 940
 48.1.1 Transformations ... 940
 48.1.2 Variations .. 941
 48.2 Global Poetical Syntax .. 941
 48.2.1 Roman Jakobson’s Horizontal Function .. 942
 48.2.2 Roland Posner’s Vertical Function .. 942
 48.3 Structure and Process .. 943

49 The Paradigmatic Discourse on presto® .. 945
 49.1 The presto® Functional Scheme .. 945
 49.2 Modular Affine Transformations .. 948
 49.3 Ornaments and Variations ... 949
 49.4 Problems of Abstraction ... 952

50 Case Study I: “Synthesis” by Guerino Mazzola ... 955
 50.1 The Overall Organization ... 956
 50.1.1 The Material: 26 Classes of Three-Element Motives 956
 50.1.2 Principles of the Four Movements and Instrumentation 956
 50.2 1st Movement: Sonata Form .. 958
 50.3 2nd Movement: Variations ... 959
 50.4 3rd Movement: Scherzo .. 963
 50.5 4th Movement: Fractal Syntax ... 964

51 Object-Oriented Programming in OpenMusic .. 967
 51.1 Object-Oriented Language ... 968
 51.1.1 Patches ... 969
 51.1.2 Objects ... 969
 51.1.3 Classes ... 970
 51.1.4 Methods ... 970
 51.1.5 Generic Functions .. 971
 51.1.6 Message Passing .. 971
 51.1.7 Inheritance .. 971
 51.1.8 Boxes and Evaluation ... 972
 51.1.9 Instantiation ... 973
 51.2 Musical Object Framework ... 973
 51.2.1 Internal Representation ... 973
 51.2.2 Interface ... 975
 51.3 Maquettes: Objects in Time ... 978
 51.4 Meta-object Protocol .. 982
 51.4.1 Reification of Temporal Boxes ... 984
 51.5 A Musical Example .. 986
XIV String Quartet Theory

52 Historical and Theoretical Prerequisites
52.1 History .. 993
52.2 Theory of the String Quartet Following Ludwig Findeisen
52.2.1 Four Part Texture 994
52.2.2 The Topos of Conversation Among Four Humanists 994
52.2.3 The Family of Violins 997

53 Estimation of Resolution Parameters
53.1 Parameter Spaces for Violins 1000
53.2 Estimation .. 1003

54 The Case of Counterpoint and Harmony
54.1 Counterpoint .. 1007
54.2 Harmony ... 1008
54.3 Effective Selection .. 1009

XV Appendix: Sound

A Common Parameter Spaces
A.1 Physical Spaces .. 1013
A.1.1 Neutral Data .. 1014
A.1.2 Sound Analysis and Synthesis 1015
A.2 Mathematical and Symbolic Spaces
A.2.1 Onset and Duration 1028
A.2.2 Amplitude and Crescendo 1028
A.2.3 Frequency and Crescendo 1031

B Auditory Physiology and Psychology
B.1 Physiology: From the Auricle to Heschl’s Gyri 1035
B.1.1 Outer Ear ... 1036
B.1.2 Middle Ear ... 1037
B.1.3 Inner Ear (Cochlea) 1037
B.1.4 Cochlear Hydrodynamics: The Travelling Wave 1041
B.1.5 Active Amplification of the Traveling Wave Motion 1042
B.1.6 Neural Processing .. 1044
B.2 Discriminating Tones: Werner Meyer-Eppler’s Valence Theory 1046
B.3 Aspects of Consonance and Dissonance 1049
B.3.1 Euler’s Gradus Function 1049
B.3.2 von Heilholtz’ Beat Model 1051
B.3.3 Psychometric Investigations by Plomp and Levelt 1052
B.3.4 Counterpoint ... 1052
B.3.5 Consonance and Dissonance: A Conceptual Field 1053
C Sets, Relations, Monoids, Groups
C.1 Sets .. 1057
C.1.1 Examples of Sets .. 1058
C.2 Relations ... 1058
C.2.1 Universal Constructions 1062
C.2.2 Graphs and Quivers 1062
C.2.3 Monoids .. 1063
C.3 Groups .. 1066
C.3.1 Homomorphisms of Groups 1066
C.3.2 Direct, Semi-direct, and Wreath Products 1068
C.3.3 Sylow Theorems on p-groups 1069
C.3.4 Classification of Groups 1069
C.3.5 General Affine Groups 1070
C.3.6 Permutation Groups 1071

D Rings and Algebras 1075
D.1 Basic Definitions and Constructions 1075
D.1.1 Universal Constructions 1077
D.2 Prime Factorization 1080
D.3 Euclidean Algorithm 1080
D.4 Approximation of Real Numbers by Fractions 1080
D.5 Some Special Issues 1081
D.5.1 Integers, Rationals, and Real Numbers 1081

E Modules, Linear, and Affine Transformations 1083
E.1 Modules and Linear Transformations 1083
E.1.1 Examples ... 1084
E.2 Module Classification 1085
E.2.1 Dimension ... 1085
E.2.2 Endomorphisms on Dual Numbers 1087
E.2.3 Semi-Simple Modules 1087
E.2.4 Jacobson Radical and Socle 1088
E.2.5 Theorem of Krull–Remak–Schmidt 1090
E.3 Categories of Modules and Affine Transformations 1090
E.3.1 Direct Sums ... 1091
E.3.2 Affine Forms and Tensors 1091
E.3.3 Biaffine Maps 1093
E.3.4 Symmetries of the Affine Plane 1096
E.3.5 Symmetries on \(\mathbb{Z}^2 \) 1097
E.3.6 Symmetries on \(\mathbb{Z}^n \) 1098
E.3.7 Complements of the Module of a Local Composition ... 1099
E.3.8 Fiber Products and Fiber Sums in Mod 1099
E.4 Complements of Commutative Algebra 1101
CONTENTS

H.3.1 Cohomology ... 1150

I Complements on Calculus 1153
 I.1 Abstract on Calculus .. 1153
 I.1.1 Norms and Metrics 1153
 I.1.2 Completeness ... 1154
 I.1.3 Differentiation .. 1155
 I.2 Ordinary Differential Equations (ODEs) 1156
 I.2.1 The Fundamental Theorem: Local Case 1156
 I.2.2 The Fundamental Theorem: Global Case 1158
 I.2.3 Flows and Differential Equations 1160
 I.2.4 Vector Fields and Derivations 1160
 I.3 Partial Differential Equations 1161

XVII Appendix: Tables 1163

J Euler's Gradus Function 1165

K Just and Well-Tempered Tuning 1167

L Chord and Third Chain Classes 1169
 L.1 Chord Classes ... 1169
 L.2 Third Chain Classes 1175

M Two, Three, and Four Tone Motif Classes 1183
 M.1 Two Tone Motifs in $\text{OnPtMod}_{12,12}$ 1183
 M.2 Two Tone Motifs in $\text{OnPtMod}_{5,12}$ 1184
 M.3 Three Tone Motifs in $\text{OnPtMod}_{12,12}$ 1185
 M.4 Four Tone Motifs in $\text{OnPtMod}_{12,12}$ 1188
 M.5 Three Tone Motifs in $\text{OnPtMod}_{5,12}$ 1195

N Well-Tempered and Just Modulation Steps 1197
 N.1 12-Tempered Modulation Steps 1197
 N.1.1 Scale Orbits and Number of Quantized Modulations 1197
 N.1.2 Quanta and Pivots for the Modulations Between Diatonic Major Scales (No.38.1) ... 1199
 N.1.3 Quanta and Pivots for the Modulations Between Melodic Minor Scales (No.47.1) ... 1200
 N.1.4 Quanta and Pivots for the Modulations Between Harmonic Minor Scales (No.54.1) ... 1202
 N.1.5 Examples of 12-Tempered Modulations for all Fourth Relations ... 1203
 N.2 2-3-5-Just Modulation Steps 1203
 N.2.1 Modulation Steps between Just Major Scales 1203
 N.2.2 Modulation Steps between Natural Minor Scales 1204
 N.2.3 Modulation Steps From Natural Minor to Major Scales 1205
CONTENTS

N.2.4 Modulation Steps From Major to Natural Minor Scales 1206
N.2.5 Modulation Steps Between Harmonic Minor Scales 1206
N.2.6 Modulation Steps Between Melodic Minor Scales 1207
N.2.7 General Modulation Behaviour for 32 Altered Scales 1208

O Counterpoint Steps 1211
O.1 Contrapuntal Symmetries 1211
O.1.1 Class Nr. 64 .. 1211
O.1.2 Class Nr. 68 .. 1212
O.1.3 Class Nr. 71 .. 1213
O.1.4 Class Nr. 75 .. 1214
O.1.5 Class Nr. 78 .. 1216
O.1.6 Class Nr. 82 .. 1217
O.2 Permitted Successors for the Major Scale 1218

XVIII References 1221

Bibliography 1223

Index 1255
Leitfaden